
IMAGE: A DESIGN INTEGRATION FRAMEWORK APPLIED
TO THE HIGH SPEED CIVIL TRANSPORT

Mark A. Hale
Graduate Researcher - Aerospace Systems Design Laboratory
GSRP Fellow, NASA Langley HPCC

James I. Craig
Professor - School of Aerospace Engineering
Co-Director - Aerospace Systems Design Laboratory

Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, Georgia 30332

ABSTRACT

Effective design of the High Speed Civil Transport requires the systematic
application of design resources throughout a product's life-cycle. Information
obtained from the use of these resources is used for the decision-making
processes of Concurrent Engineering. Integrated computing environments
facilitate the acquisition, organization, and use of required information. State-
of-the-art computing technologies provide the basis for the Intelligent Multi-
disciplinary Aircraft Generation Environment (IMAGE) described in this paper.
IMAGE builds upon existing agent technologies by adding a new component
called a model. With the addition of a model, the agent can provide accountable
resource utilization in the presence of increasing design fidelity. The
development of a zeroth-order agent is used to illustrate agent fundamentals.
Using a CATIATM-based agent from previous work, a High Speed Civil
Transport visualization system linking CATIA, FLOPS, and ASTROS will be
shown. These examples illustrate the important role of the agent technologies
used to implement IMAGE, and together they demonstrate that IMAGE can
provide an integrated computing environment for the design of the High Speed
Civil Transport.

KEYWORDS: IMAGE, computer, integration, environment, framework,
agent, wrapping, resources, networking, CATIA

BACKGROUND

Concurrent Engineering (CE) formalizes a concurrent decision-making process, as shown in
Figure 1.[1] Product and process driven engineering tasks provide information while decision-
support methods are used to make decisions. A computing environment facilitates the
acquisition, organization, and application of information and integrates the engineering
processes.

A number of pilot projects have been implemented that investigate integrated computing
issues. These projects include integrated design frameworks (FIDO [2], HiSAIR/Pathfinder
[3,4], PACT [5], Designworld [6], Prism [7]), modular conceptual design systems (ACSYNT
[8], FLOPS [9]), and quasi-procedural systems (PASS [10,11]). At the Aerospace Systems
Design Laboratory (ASDL), two design frameworks are being developed to investigate life-

Top Down Design

on Support Pr

-- Computer Integrated Environment --

7M &PToos
Product Process

Design Design
Driven Driven

Figure 1. Concurrent Engineering

cycle design. LEGEND (Laboratory Environment for the Generation, Evaluation, and
Navigation of Design) is a prototype system for quantifying, developing, and instantiating
designs. [12] IMAGE (Intelligent Multi-disciplinary Aircraft Generation Environment), the
subject of this paper, is currently under development by the authors.[13] IMAGE addresses
two fundamental issues: formulation of a design model and development of enabling
computational technologies to implement a design environment. The latter is the focus of this
paper.

Research has shown that one of the key technologies necessary for implementation of an
integrated computing environment is the agent. Building on existing agent definitions, IMAGE
adds a new component: the model. With a model, agents can be used flexibly to generate
design information and can be held accountable for their actions. This paper will define key
characteristics of these extended agents and illustrate the benefits of using agents in integrated
computing environments.

AGENT DEFINITION

The following agent definition is proposed by the authors:
An agent is a resource that has been modeled and wrapped for inclusion in a
distributed design environment. Agent design requires a designer-centered,
bi-directional wrap that is independent of proprietary boundaries and capable
of supporting increasing fidelity models.

This definition characterizes an agent by its components and behavior. There are three agent
components: the resource, the model, and the wrap. Agents must accommodate information
obtained from heterogeneous resources and must apply this to design models of increasing
fidelity across a product's life-cycle. Agents are one of the key integration tools for a
distributed, designer-centered, multi-tasking design environment.

For the first time the role of proprietary resources and information is explicitly stated in the
agent definition. Proprietary resources are generally stand-alone in nature, with limited
communications capabilities, and preserve software rights through a number of advanced
computing techniques. Together, these present a formidable challenge in the development of
integrated design environments. Finally, it should be noted that proprietary information must
be accommodated and secured in open, integrated environments.

AGENT COMPONENTS

As defined in IMAGE, a generalized agent is
either a tool or an agent. Both incorporate
resources and are used to produce design
information or make design decisions. A tool is
the most basic type of generalized agent and is
comprised of a resource, typically a computer
program, and a wrap, typically program utilities
used for communicating with other tools and
agents. An agent, as shown in Figure 2, is a
tool that, along with a resource and a wrap, also

O RESOURCE

Figure 2.

MODEL

WRAP

Agent Components

includes a model. With the addition of the model, the agent can generate accountable design
information to be used for making decisions. Accountability was first introduced in
LEGEND[13], and accountable information is defined in IMAGE as information with the

context in which it was developed. Context, in this situation, includes the "what, why, when,
and how" information attributes on which accountability can be based.

Agents and tools are the basic elements used in IMAGE to implement an integrated
computing environment. Agents operate on the basis of the models that they contain and
therefore can provide accountability for the information they produce. On the other hand, tools
which do not include a model can produce only information with no context and therefore no
inherent accountability. Tools can be as equally useful as agents, but they must be used by
either other agents or design experts, either of which must provide the appropriate
accountability.

Model

The model adds context to the information produced by an agent and, therefore, provides
accountability. Models are typically based on mathematical formulations, engineering
principles, or geometrical constructions. In addition, models may also include limitations,
units, and details of implementation of the agent.

Resource

Resources are entities that produce additional design information based on existing
information. Typical resources include off-the-shelf computer programs such as ASTROS (a
structural optimization code), FLOPS (an aircraft convergence code), ACSYNT (an aircraft
convergence code), CONMIN (an optimization package), CATIA (a three-dimensional
geometric modeling, simulation and analysis package), and ORACLE (a relational database).
Often overlooked, the design expert (the designer) and design experience are also design
resources. Knowledge-Based Systems can be used to capture design expert knowledge, while
"lessons learned" can be captured in experience-related resources.

Wrap

The wrap manages information generation within an agent and transfer between agents. The
wrap implements bi-directional information exchange within the design environment. For
computer-based resources, the communication channel needs to be accessible through the
multi-user, multi-platform, multi-language, networked workstation systems used in current
design systems. A tool that has been successfully used for inter-agent communications in
IMAGE is the Tk/tcl utility package developed at U.C.-Berkeley.[14] [Note: Tk/tcl is an
interpretive, X11 windowing system.]

As mentioned earlier, the accessibility of design resources varies significantly between
proprietary and non-proprietary codes. Nonproprietary codes are often easier to wrap because
source code level access is available. Therefore, wrapping utilities can be directly integrated by

restructuringthe sourcecodeitself. In contrast,proprietaryresourcesareusuallyprovidedin
an object/executableform. Fortunately,internal resourcesof maturecommercialsoftware
productscanoftenbeintegratedwith link-edit procedures,andthiscanformthebasisfor agent
wrapping. The ability to wrap proprietary resourcesis important becauseit presentsa
considerablesteptowarddesignautomation.[15]

ZEROTH-ORDER AGENT

The zeroth-order agent, or tool, is characterized
by two features: the model is not explicitly
defined in the agent but rather is implicitly
defined in the resource, and the input/output
stream of the resource is wrapped. Since the
model is implicitly defined, any information
generated by the resource lacks accountability.
For this reason, the differences between a zeroth-

order agent and a tool are indistinguishable.
A points profile agent is used to illustrate the

zeroth-order agent. As shown in Figure 3, the
points profile agent returns a set of normalized
coordinate pairs representing a 2D unit circle
(extension to circles of arbitrary diameter is
simple).

N=4 N=8

Figure 3. Points Profile

Model

The points profile example uses a simple mathematical model, as shown in Figure 4. When
queried for the circle description, the agent simply computes the normalized coordinate pairs
based on the number of points needed and a uniform angular distribution.

Resource

In this example, the resource implements the mathematical model in the C language, as seen in
Figure 5. The program reads the number of profile points from the command line and writes
the normalized coordinate pairs to standard output. Other implementations could be done in
C++, FORTRAN, BASIC, PASCAL, UNIX shells, etc. The specific choice of implementation
is not important as long as the resource acquires data from the command line and returns values
through standard output.

, Yn)

(n i) 2*K/N

Xn cos (e)

Yn sin (_)

n I...N

Figure 4. Points
Profile - Model

*This program determines the points

*profile for a unit circle. N is

*given on the command line.

*/

:include <stdio.h>

:include <math.h>

:define PI 3.141593

lain (int argc,char *argv[])

int N atoi(argv[l]);

int n;

for (n i; n < N; n++)

printf("{ %f %f } ",

cos((n I)*2*PI/N),

sin((n I)*2*PI/N));

4

Figure 5. Points Profile
Resource

Wrap

The wrap for the points profile example is done in
Tk/tcl, as shown in Figure 6. When a request is
made, the wrap forwards the number of points
through a UNIX pipe to the command line of the
resource. The coordinate pairs are then read from the
standard output of the resource. Tk/tcl was used to
wrap the resource since it provides agent
communication and input/output stream utilities.

As shown in Figure 7, the points profile example
is executed in the following manner:

#This procedure determines the points

#profile for a unit circle. N is

Lthe number of points.

)roc PointsProfile {N} {

set C Program [open "[circle $N" r]

set Profile [gets $C Program]

return $Profile

Figure 6. Points Profile - Wrap

l) The user or another agent queries the points profile agent wrap with the value
"PointsProfile 4".

2) The wrap gives the resource the value 4 on the resource command line.
3) The resource calculates the normalized coordinate pairs based on the implicit

mathematical model.

4) The coordinate pairs are returned to the wrap through standard output.
5) The wrap returns the coordinate pairs to the querying user or agent.

PointsProfile 4

#This procedure determines the points

#profile for a unit circle. N is

#the nui&ber of points.

)roc PointsProfile {N} {

set C Program [open "[circle $N" r]

set Profile [gets $C Program]

return $Profile

_ {10}{01}{-10}{0-1}

{1 0}{0 1}{-1 0}{0-1}

/*

*This program determines the points

*profile for a unit circle. N is

*given on the coi_aand line.

*/

#include <stdio.h>

#include <math.h>

#define PI 3.141593

main (int argc, char *orgy[])

{

int N atoi(argv[1]);

int n;

for (n 1; n < N; n++)

printf(" { %f %f } ",

cos((n 1)*2*PI/N),

sin((n I)*2*PI/N));

)

(n i) 2*g/N

Xn cos (_)

Yn sin (_)

n I...N

Figure 7. Points Profile - Execution

A number of important operating characteristics can be seen in this example:
1) The points profile wrap can be queried by any other agent or user on the network that

understands the meaning of P o int s P r o f i 1 e.

2) The resource can be changed without modifying the wrap and this can be done at
run-time.

3) The model cannot be changed without modifying the resource.

CATIA/FLOPS/ASTROS Visualization System

The IMAGE agent technology was used in another ASDL project to create a High Speed Civil
Transport (HSCT) visualization system.[16] The system utilizes CATIA as a geometric
modeling agent, FLOPS to create the HSCT geometry, and ASTROS to develop a wing
structure finite element representation. A sample HSCT configuration is shown in Figure 8. A
standard solid model of the HSCT and a wireframe representation of the wing structure FEM
can be generated in approximately five minutes using this system. The HSCT visualization

system demonstrates the capability for integrating both proprietary

resources in an agent-based environment.

CONCLUSIONS

The agent is one of the key technologies required for

the implementation of integrated computing

environments for Concurrent Engineering. The agent

as defined in IMAGE has three basic components: the

resource, the model, and the wrap. IMAGE agents

formalize the role of proprietary resources in the

implementation of computational design

environments. Finally, IMAGE uses the agent to

generate accountable information (information with

context) that can be used throughout a product's life-

cycle. A High Speed Civil Transport visualization

system shows that the coupling of proprietary and

nonproprietary agents is feasible. These examples

illustrate the important role that agents can and will

play in the design of the High Speed Civil Transport. Figure 8.

REFERENCES

and nonproprietary

HSCT Visualization

1. Schrage, D.P. and J.E. Rogan, "The Impact of Concurrent Engineering in Aerospace Systems Design,"
course notes, 1991.

2. Townsend, J.C. and R.P. Weston, "An Overview of the Framework for Interdisciplinary Design

Optimization (FIDO) Project," NASA TM 109058.

3. Jones, K.H. et al, "Information Management for a Large Multidisciplinary Project," AIAA-92-4720.

4. Dovi, A.R., et al, "Multidisciplinary Design Integration System For a Supersonic Transport Aircraft,"
AIAA-92-4841.

5. Cutkosky, M.R. et al, "PACT: An Experiment in Integrating Concurrent Engineering Systems,"
IEEE, Computer, January 1993.

6. Huyn, P.N., et al, "Automated Concurrent Engineering in Designworld," IEEE Computer, January
1993.

7. Hughes, D., "Generic Command Center Speeds Systems Design," Aviation Week & Space Technology,
March 1993.

8. "ACSYNT Overview and Installation Manual," ACSYNT Institute, May 1992.

9. McCullers, L.A., "FLight OPtimization System, User's Guide," Version 5.41, NASA Langley Research
Center, December 1993.

10. Kroo, I., et al. "A Quasi-Procedural, Knowledge-Based System for Aircraft Design," AIAA-88-4428.

11. Gage, P., et al, "Development of the Quasi-Procedural Method for Use in Aircraft Configuration
Optimization," AIAA-92-4693.

12. Stephens, E.R. "LEGEND: Laboratory Environment for the Generation, Evaluation and Navigation of
Design," Doctoral Dissertation, School of Aerospace Engineering, Georgia Institute of Technology,
September 1993.

13. Hale, M.A. and J.I. Craig, "Preliminary Development of Agent Technologies for a Design Integration
Framework," 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Panama City, FL, AIAA-94-4297.

14. Ousterholt, J.K., An Introduction to Tcl and Tk, Addison-Wesly Publishing Company, Inc: 1993.

15. Bhatia, K.G., and J. Wertheker, "Aeroelastic Challenges for a High Speed Civil Transport,"
AIAA-93-1478.

16. Marx, W.J., Schrage, D.P. and D.N. Mavris, "Integrated Product Development for the Wing Structural
Design of the High Speed Civil Transport," 5th AIAA/NASA/USAF/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Panama City, FL, AIAA-94-4253.

